Managerial Decision Making
ΕΜΜΑΝΟΥΗΛ ΚΡΗΤΙΚΟΣΘΕΟΧΑΡΗΣ ΜΕΤΖΙΔΑΚΗΣ

Managerial Decision Making

Decision-Making is one of the most important functions of management. Today’s business environment is characterized by high competition, constant changes, extensive globalization, large availability of data and information, and the huge penetration of information and telecommunications technology. In this environment, decision making is increasingly based on the use and analysis of data, through the development of “models”, and the use of user-friendly, PC-based computer packages.

On completion of this course, students should be able to: to understand and formulate decision making problems, and to use the computer technology efficiently in order to make the best decision

Course Content

  • The Fundamentals of Operations Research: Introduction to management Science; The methodology of Decision Making; Models in Managerial Decision Making 
  • Linear Programming (LP): Introduction; Characteristics of LP Problems; Graphical solution of a LP problems; A Maximization Problem; a Minimization Problems; Problems General Formulation and Assumptions of LP problems
  • Sensitivity analysis in Linear Programming: Dual Prices in LP; Reduced costs in LP; Changes in the Objective Function’s Coefficients; Changes in the Right Hand Sides (RHS) of the Constraints; Evaluation of a New Activity
  • Using Solver to Solve Linear Programming Problems: Introducing the model in Excel; Solving the Problem; Understanding and Analyzing the Solution – SOLVER Reports.
  • Integer Programming (IP): Introduction; Formulating IP Problems with Binary Variables; Formulating IP Problems; Solving IP problems; Solving Integer Programming Problems with SOLVER.
  • Implementing Management Science in Practice: Marketing and Sales problems; Production and Inventory problems; Networks and Transportation problems; Logistics and Supply Chain problems; Investments problems; Human Resources problems.
  • Decision Analysis: Introduction; Criteria for Making Decision under Uncertainly; The Expected Value of Perfect Information; Decision Tree; Calculating the Risk Profile a Strategy; Sensitivity Analysis; Using Precision Tree to Solve Decision Analysis Problems.
  • Simulation: Introduction; Implementation of Simulation under Conditions of Uncertainty
  • Using Excel and @Risk in Simulation: Introduction; Simulation of Queuing Systems; Simulation of an Inventory System; Analysis of Simulation Results.